

Innovations and networking in European Forestry

ONEforest ONEforest ONEforest

ONEforest Final Conference

First Day – 18 April 2024

Project Overview 18 April 24 // Rosenheim Technical University

ONEforest

At the beginning, there is an idea...

Europe's forests are facing major challenges: Climatic changes and increased vulnerability to storms, droughts, insects and forest fires.

Beetle infections

Forest after storm

Forest fire

Demand on European forests to contribute to climate protection.

Demand on forests to fulfill a variety of functions, e.g.

- to provide a steady supply of wood for the wood-processing industry,
- protection against avalanches and erosion,
- retention of rainwater,
- place for recreation for tourists.

Decision-making in forest management and in the forest-wood value chain becomes more and more difficult and complex!

Objectives

Development of a multi-criteria decision support system

- to promote sustainable forest management,
- to illustrate synergies and trade-offs between forest ecosystem services,
- for a reliable wood supply,
- to integrate the interests of stakeholders by means of indicators for the forest-wood value chain, taking into account social, economic and environmental dimensions, and
- to ease decision-making.

A Multi-Criteria Decision Support System for a common Forest Management to strengthen Forest Resilience, harmonise Stakeholder Interests and ensure Sustainable Wood Flows

Project duration: June 2021 - May 2024

Project consortium: 19 partners in 8 countries

Funding volume: 5.2 Mio. Euros

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement N° 101000406.

Case Study Regions

Work in the consortium

Project's main final results

Status and possible futures for Catalonia

- forest, forest wood value chain and societal development

Overview about CSRs

	Estonia	Grisons (CH)	Catalonia (ES)	Hesse/Thuringia (DE)
Geography, forest	Northern Europe,	Central Europe	Southern Europe	Central Europe
type	Boreal/Hemi-boreal	Alpine forests	Mediterranean forests	Continental forests
	forests			
Total land CSR	4,533,900 ha	710,500 ha	281,000 ha	3,728,600 ha
Forest land	2,332,600 ha	201,240 ha	281,000 ha	1,443,300 ha
Managed forest	2,003,800 ha	184,240 ha	187,000 ha*	1,356,700 ha*
land				
Main species	Scots pine, Norway	Spruce, larch and Scots	Scots pine and black pine	European beech, spruce
	spruce, silver birch, alder	pine		and Scots pine
	and aspen			
Forest ownership	Private and state	Private and state	Private and state	Private and state
Wood-based	From sawmill to pulp	Only sawmill and energy	Sawmill, poles and stake,	From sawmill to pulp
industries	and biorefinery	production	wood energy products,	and biorefinery
			and energy production	
19 April 24 // CSPc Overview	w// Poconhoim Tochnical Universit			

MFA of forest wood value chain in Catalonia (CSR3) based on data from 2018

Wood removal and fellings

- high share of harvested timber from private-owned forests, in particular softwood
- more fuel wood leaves Catalonia than it is "imported"
- MFA confirms that a large share of wood

Wood processing statistics

- a small proportion of the softwood is used to produce sawnwood products and poles and stakes
- pulpwood all leaves Catalonia
- by-products of the sawmills and poles and stakes productions are processed to energy products
- hardwood from private forests is almost used as energy

How do we view forest ecosystem services in Catalonia?

Forest ecosystem services in Catalonia

Main goals/region	Catalonia (ES)
Biodiversity	Regulate forest management to be more sustainable
Bioeconomy	Connect growth with preserving environment
Climate change	Decrease greenhouse gas emissions
Energy	Promote use of bio-energy
Forest	Regulate forest management balancing economic values and preservation

Forest ecosystem services in Catalonia

ores

18 April 24 // Catalonia // Swedish University of Agricultural Sciences (SLU)

Forest ecosystem services in Catalonia

function

Most important forest ecosystem services

How do we view forest ecosystem services in Catalonia?

Pathways forward – scenarios in Catalonia

Strong political decision/institutions

decision/institutions

18 April 24 // Scenario Development for each CSR // Rosenheim Technical University & Swedish University of Agricultural Sciences (SLU)

Vision and attitude in scenarios / Catalonia

Vision: Strong regulation to promote protection of forests for carbon storage.

Attitudes: supporting ecosystem services (carbon capture, water provision) and biodiversity are in focus, integrating preference in forest management decisions

Weak political

decision/institutions

Vision: balancing economic and ecologic values, supporting climate change mitigation and adaptation.

forests

Attitudes: forest management to handle increasing forest damages (e.g., fire) is recognized as important.

Vision: protection of forests to promote ecosystem services like recreation and clean air and water

<u>Attitudes</u>: recreation and biodiversity are prioritized and conflicts between forestry or protection are more common.

High demand biomass from forests

> Vision: Sustainable society, bioeconomy development with diversified forest use emphasizing climate change adaptation

<u>Attitudes</u>: forest management important to prevent effects of climate change (e.g., fire)

18 April 24 // Scenario Development for each CSR // Rosenheim Technical University & Swedish University of Agricultural Sciences (SLU)

Wood value chain and industry development in Catalonia

Weak political decision/institutions

<u>Wood-value chain market development:</u> supply for timber stays constant, while demand for timber for building sector increase as well as wood fuel.

<u>Industrial development:</u> traditional industry continues develop while new industry is not developing.

18 April 24 // Scenario Development for each CSR // Rosenheim Technical University & Swedish University of Agricultural Sciences (SLU)

Scenarios, MCDSS and DVCM

How can decision-making be supported by a comprehensive tool for the forest wood value chain?

Timehorizon 2020-2060 4 overriding scenarios for the forest wood value chain MCDSS Interest of Forest Growth Models Dynamic Model of stakeholders of 4 CSRs Wood Value Chain Controller Forest management options Stakeholder value chain from round wood to semi-finished wo Forest operations methods instruction wood 0000 wood assortments Indicators Standing timber volume Harvvested timber volume Wood revenues Number of large trees and others Visual attractiveness Volume of deadwood Impact on Output: forest management wood value chain options

18 April 24 // Scenarios, MCDSS and DVCM // Rosenheim Technical University

INNOVAFor

•

.

The Indicators

Examplary simulated development of one representative forest stand

Pure beech stand of medium age (CSR continental

Shannon index vs. number of large trees

Diameter variability vs. number of large trees

MCDSS - Concept

Initial	Species 1	Species 1 Species 2 share share		:				
stand	share				share			
1	10	1	0					
2	10	1	0					
3	50	5	0					
	0	1(00					
Initial	Managemei	nt		In	ndicators ≈ 20			
Stand	option		0	1	2		8	
1	А	А		1	1		5	
1	В		1	0	1		0	
1	С		1	1	1		1	
1	D		1	2	0		0	
2	А							
2	В							
2	С							
2	D	D						
	А							

Management options (example):

A: Low intensity B: Business as usual (BAU) C: Climate adapted forestry D: Intensified management

18 April 24 // MCDSS // TUD Dresden University of Technology

DVCM – What is the Dynamic Value Chain Model?

CSR-specific modeling of

- different wood-based industries and their capacities
- the socio-economic impact
- the environment impact

Methodology of the DVCM

- DVCM uses the System Dynamics Approach (Club of Rome | World Model) to simulate the donwstream value chain by taking into account constraints or system behaviour over the time horizon from 2020 to 2060
 - □ 12 different wood value chains from sawnwood, different panel board and pulp to energy products
- To quantify the wood flow, socio-economic and environmental impact other methodologies are combined with System Dynamics
 - Value Added Calculation based on a greenfield approach
 - Life Cycle Assessment (cradle-to-gate) streamlined and prospective approach
 - Social Life Cycle Assessment

18 April 24 // Scenario Development for each CSR // Rosenheim Technical University

Results

•

.

How can decision-making be supported by a comprehensive tool for the forest wood value chain?

18 April 24 // Scenarios, MCDSS and DVCM // Rosenheim Technical University

MCDSS - Indicator weights in scenarios

	Scenario I	Scenario II	Scenario III	Scenario IV
	Society under	Climate change	Protection and	Climate change
	voluntary green	adaption and	recreation-oriented	mitigation in a
	transition	green transition	forest management	slow-growing
				bioeconomy
Standing timber		5	10	10
Harvested timber total	50	30	10	20
Periodic annual increment	5	5	5	5
QMD (harvested species)	5	3		
QMD (harvested stand)	10	3		
QMD (standing species)		2	5	
QMD (standing stand)		2	5	
Height variablity (SD)				5
Diamater variability				5
(mean)				5
Deadwood with			10	10
decomposition			10	10
Carbon in stock		5		5
aboveground		J		5
Carbon sequestration	5	15		10
Number of large trees		5	20	10
Visual attractiveness		5	20	10
Risk of economic loss		5		
Shannon index	5	5	15	10
Wood revenues	20	10		

- 17 relevant indicators identified for CSR Catalonia
- Weights assigned to each indicator and for each scenario individually (THRO / SLU)

MCDSS - Results for Scenario III

1	A	В	С	D	E	F	G	н	1
L	Objective	0,7553							
	Computation Time	68,3525016							
	MIP Gap	NaN							
1									
5	group	obj	lb	ub	objValue				
5	Global	Shannon Index	11,73378668	11,9944512	11,89346649				
7	Global	Visual Attractiveness	15226,6713	16312,8882	16265,97758				
3	Global	Number of Large Trees	2852834,009	7695385,115	7491898,613				
,	Global	Deadwood	10831349,04	13061463,88	12371772,98				
0	Global	QMD Standing Stand	474853,1271	535983,8234	507564,084				
1	Global	QMD Standing Species	12295500,71	13808342,74	13413874,71				
2	Global	Standing Timber	516956634,7	616348773,8	567409297,4				
3	Global	Harvested Timber (total)	95315007,3	199037400,1	165055326,1				
4	Global	Periodic Annual Increment	6938792,489	9185256,945	8236465,088				
5	Global	QMD Harvested Species	4311958,507	7177996,161	5306642,03				
6	Global	QMD Harvested Stand	385582,6796	595479,4034	433882,1608				
7	Global	Height Variability (SD)	29888,5675	38739,7614	35898,11194				
B	Global	Diameter Variability (Mean)	449260,8015	516046,6055	482516,6468				
9	Global	Carbon in Stock (Aboveground)	1004450633	1175770764	1073615319				
0	Global	Carbon Sequestration	84182291,67	126889810	99477369,96				
1	Global	Economic Loss RCP 4.5	-658178,1021	7447,5058	-89413,9097				
2	Global	Wood Revenues	4377103291	9030269783	6161616134				
3									
4	stand	cell	mgmt opt	plot id					
5	21_LOW_YOUNG	1	В	80004					
6	21 LOW MATURE	2	В	80006					
7	21_HIGH_MEDIUM	3	A	80012					
8	21 HIGH YOUNG	4	В	80014					
9	21_HIGH_MEDIUM	5	A	80015					
0	21 LOW MEDIUM	6	A	80019					
1	21_HIGH_MEDIUM	7	A	80020					
2	21 HIGH MEDIUM	8	A	80021					
3	21_LOW_MEDIUM	9	A	80022					
4	21_LOW_MEDIUM	10	A	80024					
5	21_LOW_MEDIUM	11	A	80025					
6	21 LOW MEDIUM	12	A	80027					
7	21_LOW_MEDIUM	13	A	80028					
8	21_LOW_MEDIUM	14	A	80029					
9	21 LOW MEDIUM	15	A	80030					

Numerical output with objective values and assignment of management options to cells

Radar chart with range of indicator values and optimization result

Distribution of management options in the CSR

Perspectives of Forest Operations

Risk maps and practical guidelines for preperation against disturbances for all CSR regarding:Drougth, Fire and Wind

Best-Harvesting Method calculated for all CSR with three combinations regarding: CO₂-Emissions, Productivity, Jobs, Costs, Fuel Consumption

DVCM – Scenarios

<u>Vision</u>: protection of forests to promote ecosystem services like recreation and clean air and water

<u>Attitudes</u>: recreation and biodiversity are prioritized and conflicts between forestry or protection are more common.

DVCM provides projections about ... Scenario III

EUR/yr

40.000.000

30,000,000

20.000.000

10,000,000

0-

... potential wood supply vs. potential use of wood assortments in the specific value chains of the regions related to the forest management options ... potential socio-economic impacts of the specific and total wood value chains of the regions related to the forest management options

Potential Total Value Added Sawmill per Year - VAMPY 1
 Potential Total Value Added Poles-Stakes per Year - VAMPY 2

Potential Total Value Added Pellets-Briguettes per Year - VAMPY x

20212223242526272829303132333435363738394041424344454647484950515253545556575859

Potenetial Va	lue Added SaPontembiad Voelo	e Added PotestStakkekup	Added Pellets-Briquettes	per kg C(
1 Jan 2020	€0.85	€0.04	€0.09	5
1 Jan 2021	€0.87	€0.04	€0.09	
1 Jan 2022	€0.88	€0.04	€0.09	
1 Jan 2023	€0.90	€0.04	€0.09	
1 Jan 2024	€0.91	€0.04	€0.09	
1 Jan 2025	€0.92	€0.04	€0.09	
1 Jan 2026	€0.93	€0.04	€0.09	
1 Jan 2027	€0.95	€0.04	€0.09	
1 Jan 2028	€0.96	€0.04	€0.09	
1 Jan 2029	€0.97	€0.04	€0.09	
1 Jan 2030	€0.99	€0.04	€0.09	
1 Jan 2031	€0.99	€0.04	€0.09	
1 Jan 2032	€0.99	€0.04	€0.09	
1 Jan 2033	€0.98	€0.04	€0.09	
1 Jan 2034	€0.98	€0.04	€0.09	
1 Jan 2035	€0.98	€0.04	€0.09	
1 Jan 2036	€0.99	€0.04	€0.09	
1 Jan 2037	€1.00	€0.04	€0.09	

... potential environmental impacts of the specific and total wood value chains of the regions related to the forest management options

Conclusion

- Multi-Criteria Decision Support System
- Dynamic Value Chain Model
- Data pool
- Policy Recommendations
- Top Soil Cover

Follow us

@ONEforest_H2020

/ONEforest project

oneforest.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement N° 101000406.

Thank you for your attention!

Sources

Picture Erntemaßnahme nach Kalamität:

https://www.sauerlandkurier.de/hochsauerlandkreis/wiederaufforstung-im-hochs auerland-stellt-regionalforstamt-vor-mammutaufgabe-90473084.html

Picture: Waldbrand https://s.france24.com/media/display/d644d4fc-0529-11ed-9406-005056bfa79e/ w:1280/p:16x9/AP22197421956257.jpg

All other pictures: Dr. Martin Brunsmeier

18 April 24 // Scenarios / Rosenheim Technical University & Sweidish University of Agricultural Sciences (SLU)

DVCM – Scenarios

	I Society under voluntary green transition	Il Climate change adaption and green transition	III Protection and recreation- oriented forest management	IV Climate change mitigation in a slow-growing bioeconomy
supply of wood and semi-finished goods	transport radius for wood supply (pellets 200 km, sawnwood/panel production 200-300 km)> increase of transport costs	transport radius for wood supply (pellets 200 km, sawnwood/panel production 200-300 km)> increase of transport costs	regional/national wood supply is declining and wood is imported from European leveli> increase of transport radius and other transport means (trains)	transport radius for wood supply (pellets 200 km, sawnwood/panel production 200-300 km)> increase of transport costs
demand of wood (and non-wood) products	demand of wood products is related to projected GDP (increase 2050)	demand of wood products increase by 30 % till 2050; favourisation of products that store carbon long time, fuel/energy wood will only be important till 2035, afterwards it decreases	demand of wood products decrease by 20 % till 2050 because wood- based products are becoming less attrative	demand of wood products is related to projected GDP (increase 2050)
development of industry (focus on capacity)	wood processing industry remains structurally unchanged, no increase/decrease of additional capacities (investments)	industry slowly dissolves, but is gradually replaced by large industry with a broader product portfolio	wood processing industry remains structurally unchanged, no increase/decrease of additional capacities (investments)	Wood processing industry increase their capacities and broaden their product portfolios including biomass products (energy) till 2050
development of industrial technologies and new industries	only rationalisation investments, no new industry from other sectors	new industry (biorefinery) enters the market from 2035 onwards	wood processing industry partly disappears and is replaced by other industries from other sectors (e.g. biorefinery)	only rationalisation investments, no new industry from other sectors
future work skills and work force	shortage of skilled labour in forestry and wood processing	due to increased wages and improved working conditions more skilled workers are attracted	increase of skilled workers, but they leave to work abroad due to low salary, poor working conditions and social recognition	by increasing wages and improving working conditions more skilled workers are attracted